Óhjákvæmilega slæðast villur með í fyrstu
útgáfu stærðfræðibókar þrátt fyrir vandaðan prófarkarlestur.
Höfundar bókarinnar eru afar þakklátir er notendur bókarinnar
benda okkur á villur sem ekki eru þegar komnar í villulistann hér
að neðan. Einfaldast er að senda okkur ábendingu þar um
með aðstoð póstsins hér til hliðar.
Bls. 71-75 |
Í dæmum 3.6-3.10, 3.14 og 3.17 er eðlilegra
að tákna föllin sem heilda á með h(x)
fremur en f(x) með hliðsjón af
framhaldinu. |
Bls. 104 |
Í stað orðsins flatarmál í neðstu línu
komi orðið rúmmál. |
Bls. 105 |
Ferillinn á mynd í dæmi 3.66 er y = x2
- 1. |
Bls. 109 |
Hægra megin jafnaðarmerkis á að standa sinn+1(x)
í stað sinn(x). |
Bls. 111 |
Nefnari brotsins í dæmi 22c) á að vera x2
- 1. |
Bls. 111 |
Í b)-lið dæmis 25 á að snúa um y-ás. |
Bls. 119 |
Í dæmi 1c í æfingu 4.1B á að vera cos(y)
í stað cos(x). |
Bls. 119 |
Dæmi 2cdef í æfingu 4.1B eru óheppileg á
þessum stað. |
Bls. 144 |
Dæmi 3a). Í stað {0} komi {1}. |
Bls. 150 |
Dæmi 5.17. Í nefnara annars liðar á
að standa n + 2 en ekki n + 1. |
Bls. 158 |
Dæmi 4b). Hægri hliðin á að vera n·3n+1 |
Bls. 159 |
Dæmi 12c). Í stað n komi i. |
Bls. 160 |
Dæmi 15a). s2 = 1/5. |
|
|
|
|
|
|
Bls. 162 |
Æfing 1.1B, dæmi 8. Í stað x
= 3/10 komi x = 3·(2)1/3 |
Bls. 162 |
Æfing 1.3, dæmi 9. Í stað ek
komi 2k. |
Bls. 163 |
Æfing 2.1B, dæmi 3b). Í
bútunina vantar punktinn 0. |
Bls. 163 |
Æfing 2.1B, dæmi 3c). sI
= 0.75. |
Bls. 163 |
Æfing 2.1B, dæmi 3d). SI
= 5.375. |
Bls. 166 |
Æfing 3.2, dæmi 2f).
Vantar x í fyrri lið. |
Bls. 166 |
Æfing 3.2, dæmi 3b).
Vantar 2 í nefnara fyrsta brotsins. |
Bls. 166 |
Æfing 3.2, dæmi 3c).
Formerki öfug nema á fyrsta lið. |
Bls. 168 |
Æfing 3.4, dæmi 7b).
Stóri sviginn á að ná utan um báða lograna. |
Bls. 168 |
Æfing 3.4, dæmi 8b). Í
stað ln|x-2| komi 0.5x2 - 2x. |
Bls. 168 |
Æfing 3.5, dæmi 1d).
Svarið er 241.274. |
Bls. 168 |
Æfing 3.5, dæmi 1f).
Svarið er 67.8584. |
Bls. 168 |
Æfing 3.5, dæmi 1g).
Svarið er 536.165. |
Bls. 168 |
Æfing 3.5, dæmi 1h).
Svarið er 0.942478. |
Bls. 168 |
Æfint 4.1A, dæmi 2a). Í
fyrri sviga komi 3 í stað 1 og mínus er ofaukið framan
við síðari sviga. |
Bls. 169 |
Æfing 4.1C, dæmi 3c).
Þættinum 2 ofaukið í síðari lið. |
Bls. 170 |
Æfing 4.1C, dæmi 8c).
Vantar 1/2 framan við fyrri lið. |
Bls. 170 |
Æfing 4.1C, dæmi 9. Svör
vantar. Þau eru
a) y = (ke3x)/x
og y = 0
b) y = x5/4 +kx-3,
y = x5/4 -
14x-3
c) y = 0.5ex + ke-x,
y = 0.5ex + 0.5e-x
d) y = (ln(x) + k)x3,
y = (ln(x) + 10)x3 |
Bls. 170 |
Æfing 5.1, dæmi 1c.
Svarið er 108 |
|
|
|
|
|
|